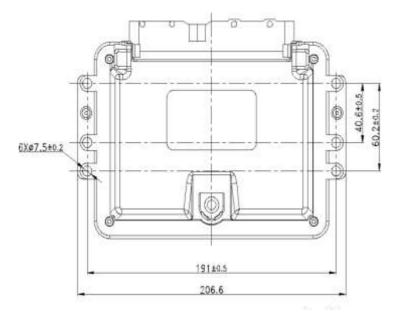
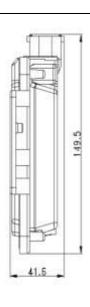


Vehicle & Battery Management System Control Unit Model No.: AT-VBU2000-24A07

Specification

Features:


1. Voltage: 12/24VDC


2. Operation Temperature: $-40^{\circ}\text{C} \sim 85^{\circ}\text{C}$

3. IP Protection: IP67

4. Compatible of CAN2.0B ISO11898-

2003

Modification Record

V0.1	Sun Baoyang	2021.7.30	first draft
V0.2	Sun Baoyang	2021.8.25	(1) Modify the pin definition;(2) Add a hard wire to wake up, high and low can match.
V0.3	Sun Baoyang	2021.9.1	(1) Pin definition changes with function serial number: Change P87-LS18 to LS17; Change P97-LS12 to LS14; Change P104-LS15 to LS11; Change P105-LS13 to LS15; Change P113-LS17 to LS13; Change P115-LS14 to LS18; (2) Modify the product model: "AT-VFBSSS-200" changed to "AT-VBU2000-24A07"

1. Overview

The Model No. of AT-VBU2000-24A07 vehicle and battery management system control unit is a VCU+BMS integration solution independently developed for bus project, aiming at reducing the cost of parts and exploring the power domain controller. On the basis of VCU function, this product adds BMS control function, including SOC calculation, SOP estimation, contactor control logic, fault diagnosis, balance control, etc.

In order to ensure the high safety of the battery system, the product adopts the following high safety design:

- Adopt functional safety requirements and development processes;
- ➤ Perfect fault diagnosis and protection mechanism, including: contactor adhesion detection, insulation, over voltage, under voltage, over current, short circuit (internal and external), over temperature, etc;

2. Technical parameter

2.1 Parameters

type	parameter
Input Voltage Class	12/24VDC
Operating Voltage Range	9V~32V
Current Of Operation	<0.2A
Static Current	<1mA
Bus Clock Frequency	200Mhz
EEPROM	128k
Flash	2048k
RAM	184K
RAM	8k
range of working temperature	-40°C~+85°C
Working Humidity RH	20%~90%
Protection class	IP67
Installation Position	Cab, Passenger Compartment Or Chassis
Life Cycle	8 years / 120,000 km for passenger vehicles, 5 years / 200,000 km for commercial vehicles whichever comes first

Table 1 Technical parameter list

2.2 Interface Definition

Table 2 Interface Definition List

NO.	Functio	n		Qty	Note			
			(47.1)	4	output current of 50mA. (The connector leads two power outputs respectively for a total of four power outputs.)			
1		Pov	ver out (5V)	5	Two independent power outputs, each with a rated output current of 250mA (the connector leads two and three power outputs respectively for a total of five).			
2		(CAN	5	There are 5 channels; one of which has wake-up function and the other CAN isolate and support CANFD.			
3			I/O Input	18	Adjust the resource quantity by adjusting the hardware			
					BOM			
4	Input	40	40	40	40	Analog acquisition	12	12 channels analog quantity collection
6			Internal/Ext ernal Wake Up		The interior contains 1 CAN activation, 1 RTC activation, There are four external high level activations, two of which can be configured with low level activation			
8			PWM Input	4				
9			PWM Output	4	Frequency:1Hz-1KHz, Duty Cycle:0%-100%			
10			High Side Drive	8	<0.8A, Can be configured as PWM.			
	Output				Four channels have anti-reverse protection function, <0.5A; Two channels<0.75A; Six channels<1A,Two of them can be configured as			
11		32	Low Side Drive	18	PWM; Four channels<1.5A, Two of them can be configured as PWM; Two channels<1.7A;			
12			24V Power Supply Output	1	Rated total current 5A			
13			H-bridge Power Driver	1	<3A			

2.3 Implement standards QC/T 413-2015 Basic technical requirements for automotive electrical equipment

GB/T 28046.2-2011 Road vehicles electrical and electronic equipment

Environmental conditions and tests for

Part 2: Electrical load

GB/T 28046.3-2011 Road vehicles electrical and electronic equipment GB/T 28046.4-2011 Road vehicles electrical and electronic equipment GB/T 30038-2013 Road vehicles Electronic Equipment (IP code) GB/T 19951-2005 Road vehicles generated by electrostatic discharge GBT 21437.2-2008 Road vehicles conduction and coupling along power lines GB/T 21437.3-2012 Road vehicles

conduction and coupling

Environmental conditions and tests for Part 3: Mechanical load Environmental conditions and tests for Part 4: Climate load Protection Class of Electrical and

Test method for electrical disturbance

Electrical disturbance caused by Part 2: Electrical transient conduction

Electrical disturbance caused by Part 3:Conductors other than power lines

pass capacitive and inductive coupled electrical transient emission transient voltage immunity test (signal line)

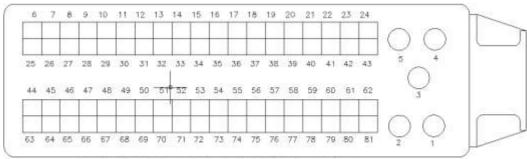
GB/T 18655-2010 Vehicles, ships and internal combustion engines Radio disturbance characteristic Limits and measurement methods for the protection of vehicle mounted receivers

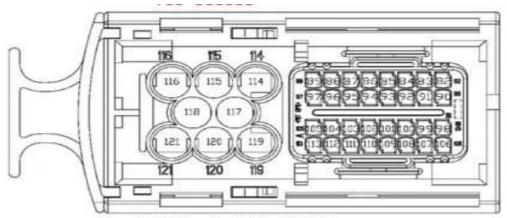
GB/T 33014.4-2016 Road vehicles Test method for immunity of electrical/electronic components to narrowband radiated electromagnetic energy Part 4: High Current injection (BCI) method

GB/T 33014.2-2016 Road vehicles Test method for immunity of electrical/electronic components to narrowband radiated electromagnetic energy Part 2: Anechoic chamber method

ISO 11452-9:2012 Road vehicles -- Component test methods for electrical disturbances from narrowband radiated electromagnetic energy -- Part 9: Portable transmitters

3. Connector Type


The Tyco 121 pin connector (model 1241434-1) is used on the VBU vehicle and the battery system control unit, as shown in Figure 1.


Tyco socket models for connecting to 121PIN connectors: 1473244-1(81P) and 1473252-1(40P).

4. Interface Definition

注: 图中插件视图方向均为出线方向(正视)

Figure 2 1473244-1(81P)121 Pin Distribution

注:图中插件视图方向均为出线方向

Figure 3 1473252-1(40P)121 Pin Distribution

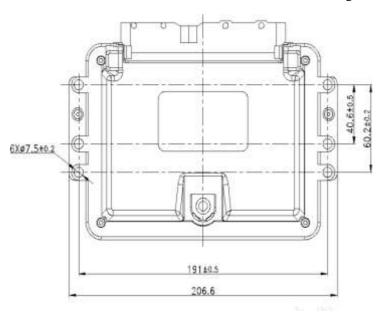
Table 3:81 Pin Definition

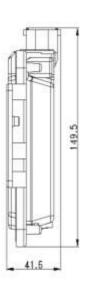
	81Pin												
No	Туре	Note	No	Туре	N ot e	No	Туре	No te	No	Туре	No te		
6	CANH4		25	CAN4_SHLD		44	DRIVERPOWE R_24V		63	EXT_D_IN18			
7	CANL4		26	GND		45	EXT_A_CC2_2		64	EXT_D_IN17			
8	+5V_sensor4		27	EXT_A_CC2 _1		46	+5V_sensor4		65	+5V_sensor4			
9	CANH1		28	EXT_D_IN13		47	EXT_D_IN15		66	EXT_D_IN16			
10	CANL1		29	GND		48	CAN1_SHLD		67	EXT_D_IN14			
11	CANH3		30	GND		49	CANL3		68	CAN3_SHLD			
12	GND		31	EXT_A_TEM P_INPUT5		50	P_24V		69				
13	+5V_sensor3		32	EXT_A_TEM P_INPUT3		51	+5V_sensor3		70				
14	GND		33	EXT_A_TEM P_INPUT2		52	EXT_A_TEMP_ I NPUT6		71	GND			
15	EXT_V_CRR_L O_0		34	EXT_A_TEM P_INPUT1		53	EXT_A_TEMP_ I NPUT4		72				
16	+5V_sensor2		35	EXT_V_CRR _HI_0		54	+5V_sensor2		73				
17	CANH0	CANB	36	EXT_D_IN11		55	EXT_D_IN12		74				
18	CANL0		37	GND		56	EXT_D_IN10		75	EXT_D_IN9			
19	CAN0/2_SHLD		38	EXT_V_CRR _HI_1		57	EXT_V_CRR_ L O_1		76	GND			
20	GND		39	+5V_sensor1	-	58	+5V_sensor1		77	GND			
21	CANH2		40	DC_CHG_24 V		59	EXT_D_IN8		78	CC/CC2_CHG			

22	CANL_2	CANA	41	EXT_D_IN6	60		Ι	OBG		79	EXT_D_IN7	
23	EXT_D_IN5		42	EXT_D_IN4	61	D	DC/DC_24V EXT_D_IN1			80	EXT_D_IN2	
24	EXT_D_IN3		43	OBC_24V	62	Е	ΧT	_D_IN1		81	DC/DC_24V	
No	Туре	Note	No	Туре		Note		No	Type		Note	
5	Frequ ently- u sed					Power		2	N	Y_O V_2 4V	DINH Activation	
4	KL30_24V	Powe r Suppl y	3	GND		oundir	1	1		GND	Power grounding	

Table 4: 40 Pin Definition

40Pin												
No	Туре	No te	No	Туре	Note	No	Туре			Note		
121	HS7_OUTP UT		118	HS6_OUTPU		116	HS5_	_OUTP	UT			
120	HS8_OUTP UT			Т		115	LS18_OUTPUT					
119	LS12_OUTP UT		117	HS1_OUTPU T		114	114 G N D					
No	Туре	No te	No	Туре	Note	No	Type	Note	No	Туре	Note	
113	LS13_OUTP UT		105	LS15_OUTP UT		97	LS14_OU TPUT		89	LS16_OUT P UT		
112	EXT_PWM _CH0		104	LS11_OUTP UT		96	HS2_OUT PUT		88	TL6209_OU T		
111	EXT_PWM _CH2		103	EXT_PWM_ CH1		95	TL6209_O UT2		87	LS17_OUT P UT		
110	LS9_OUTP UT		102	EXT_PWM_ CH3		94	LS10_OU TPUT		86	GND		
109	LS6_OUTP		101	HS4_OUTPU		93	GND		85	GND		




	UT			T					
108	LS3_OUTP UT		100	LS4_OUTPU T	92	HS3_OUT PUT	84	EXT_PWM _O UT4	
107	LS1_OUTP UT		99	LS2_OUTPU T	91	EXT_PW M_OU T3	83	EXT_PWM _O UT2	
106	LS8_OUT PUT	·	98	LS5_OUTPUT	90	EXT_PW M_OU T1	82	LS7_OUTP U T	

5. Product Dimensions

The AT-VBU2000-24A07 can be arranged in the cockpit or passenger compartment, and its product shape is shown in Figure 4.

3 Product Size Drawing

6. Precautions For Use

- 1. Please read the technical parameters and pin definition of the vehicle controller carefully before use. Incorrect or out-of-range wiring harness access may result in abnormal function of the vehicle controller.
- 2. The installation position must be waterproof, moisture-proof, dust-proof, and well cooled. No DC/DC high-power inductive devices are nearby.
- 3. The controller of the vehicle must be plugged in and out when the vehicle is powered off.
- 4. Non-professional personnel are forbidden to remove the vehicle controller shell, shall not touch the internal circuit board, so as not to cause damage.
- 5. Without the confirmation of the manufacturer's technical personnel, it is prohibited to modify or transplant this system in other projects, in order to avoid serious accidents.